FEM

Finite Elemente Methode (FEM) 

Die Finite-Elemente-Methode (FEM) ist ein allgemeines, bei unterschiedlichen physikalischen Aufgabenstellungen angewendetes numerisches Verfahren. Am bekanntesten ist die Anwendung der FEM bei der Festigkeits- und Verformungsuntersuchung von Festkörpern mit geometrisch komplexer Form, weil sich hier der Gebrauch der klassischen Methoden (z. B. die Balkentheorie) als zu aufwändig oder nicht möglich erweist. Logisch basiert die FEM auf dem numerischen Lösen eines komplexen Systems aus Differentialgleichungen.

Das Berechnungsgebiet (z. B. der Festkörper) wird in endlich viele Teilgebiete (z. B. Teilkörper) einfacher Form aufgeteilt, z. B. in viele kleine Quaderchen oder Tetraederchen. Sie sind die "finiten Elemente". Ihr physikalisches Verhalten kann aufgrund ihrer einfachen Geometrie mit bekannten Ansatzfunktionen gut berechnet werden. Das physikalische Verhalten des Gesamtkörpers wird dadurch nachgebildet, wie diese Elemente auf die Kräfte, Lasten und Randbedingungen reagieren und wie sich Lasten und Reaktionen beim Übergang von einem Element ins benachbarte fortpflanzen durch ganz bestimmte problemabhängige Stetigkeitsbedingungen, die die Ansatzfunktionen erfüllen müssen.

© 2019 @ Christian Eichert. Alle Rechte vorbehalten. Keine Weiternutzung ohne Freigabe !
Unterstützt von Webnode
Erstellen Sie Ihre Webseite gratis! Diese Website wurde mit Webnode erstellt. Erstellen Sie Ihre eigene Seite noch heute kostenfrei! Los geht´s